Novel Optically Active 7,7'-Bridged-1,1'-biisoquinolines and their Chelation to Rhodium(I) Ion

Koji Yamamoto,* Hirohisa Tateishi, Kazuaki Watanabe, Tomohiro Adachi, Hiroshi Matsubara, Tatsuo Ueda and Toshikatsu Yoshida*
Department of Chemistry, Faculty of Integrated Arts and Sciences, University of Osaka Prefecture, Sakai, Osaka 593, Japan

Optically pure 7,7'-ethylenedioxy-1, 1^{\prime}-biisoquinoline 2 and the 7,7'-(5-methoxy-m-xylylenedioxy) analogue $\mathbf{3}$ are prepared; their chelation to rhodium(1) takes place with complete retention when $(R)-(-)-3$ is treated with $[\operatorname{RhCl}(\operatorname{cod})]_{2}$ to give $[\operatorname{Rh}\{(R)-(-)-3\}(\operatorname{cod})]^{+}$, while a similar reaction of $(+)-2$ gives a racemic complex $[\operatorname{Rh}(2)(\operatorname{cod})]^{+}$; both Rh^{1} complexes are structurally characterized by an X-ray diffraction study.

Recent advances in asymmetric catalysis with chiral transition metal compounds ${ }^{1}$ have aroused interest in chelating ligands incorporating axially dissymmetric heteroaromatic compounds with two nitrogen atoms. Although a number of $3,3^{\prime}$-annulated $2,2^{\prime}$-bipyridines ${ }^{2}$ and $2,2^{\prime}$-biquinolines ${ }^{3}$ have been prepared and some shown to be conformationally stable in free and/or in their octahedral $\mathrm{Ru}^{\mathrm{II}}$ complexes, optically active analogues of this type are completely unknown. Previously, we reported the synthesis of optically active $7,7^{\prime}$-dimethoxy- $8,8^{\prime}$-biisoquinoline $\mathbf{1}$ and its rhodium(I$)$ complex $\left[\mathrm{Rh}_{2}\{\mu-(+)-\mathbf{1}\}_{2}(\operatorname{cod})_{2}\right]^{2+}$, where the biisoquinoline coordinates as a bridging ligand rather than a chelating one owing to its inherent non-coplanarity of two isoquinoline rings. ${ }^{4}$

One of the factors determining the coordination modes of non-coplanar biisoquinolines as bridging or chelating ligands may be the distance between the nitrogen and pivotal carbon atoms. Thus, $7,7^{\prime}$-disubstituted $-1,1^{\prime}$-biisoquinolines with a shorter N-C distance than the $8,8^{\prime}$-analogue are expected to chelate Rh^{I}. Here, we report the preparation of novel optically active 7,7'-ethylenedioxy- and -(5-methoxy-m-xylylenedioxy)-$1,1^{\prime}$-biisoquinolines $\mathbf{2}$ and $\mathbf{3}$, respectively. The latter coordinates to Rh^{I} as a chelating ligand with retention to give optically active $[\operatorname{Rh}(\mathbf{3})(\operatorname{cod})]^{+} 5$, while the former gives racemic $[\operatorname{Rh}(2)(\operatorname{cod})]+4$.

1-Chloro-7-hydroxyisoquinoline $6\left(\mathrm{mp} 202-204{ }^{\circ} \mathrm{C}\right.$) was prepared by N-oxidation of 7-methoxyisoquinoline ${ }^{5}$ and chlorination of the resulting isoquinoline N-oxide with phosphorus oxychloride followed by demethylation with boron tribromide (42% overall yield). \dagger The termolecular condensation of 1,2 -dibromoethane with 6 (2 equiv.) was carried out in DMF with caesium carbonate to give the biisoquinoline dichloride 7 (mp $177-179^{\circ} \mathrm{C}, 34 \%$). Lithiation of 7 with n-butyllithium in THF followed by halogenation (iodine) gave the diiodide 8 (mp $202-204^{\circ} \mathrm{C}, 72 \%$). Intramolecular Ullmann coupling of $\mathbf{8}$ with activated copper powder ${ }^{6}$ in DMF yielded $2\left(\mathrm{mp} 257-259^{\circ} \mathrm{C}\right.$, 28%) \dagger Compound $3\left(\mathrm{mp} 226-227^{\circ} \mathrm{C}\right.$) was prepared as for 2 starting from the biisoquinoline dichloride 9 obtained by condensation of 6 with 3,5-bis(bromomethyl)anisole ${ }^{7}$ (17.5% overall yield) (Scheme 1). Optical resolution of both (\pm)-2 and (\pm)- $\mathbf{3}$ was achieved by HPLC [cellulose tris(3,5 -dimethylphenylcarbamate) on silica gel], 8 elution with hexane-ethanol $(7: 3)$ afforded optically pure (-)-2,(+)-2,(-)-3 and (+)-3 with
$[\alpha]^{24} \mathrm{D}\left(\mathrm{CHCl}_{3}\right)-161,+163,-80$ and +82 , respectively. Optical stability of (-)-2 and (-)-3 was examined by monitoring thermal racemization with polarimetry. The former racemizes at $78^{\circ} \mathrm{C}$ in ethanol with a halflife of $64 \mathrm{~min}\left(\Delta G^{\ddagger} 26\right.$ $\left.\mathrm{kcal} \mathrm{mol}^{-1}\right)(1 \mathrm{cal}=4.184 \mathrm{~J})$, while the latter proved to be optically stable; showing no change in optical rotation after refluxing in $\mathrm{EtOH}(24 \mathrm{~h}$).

The preparation of an optically active rhodium(I) complex of enantiometrically pure 2 was unsuccessful owing to its optical instability. Thus, treatment of $(+)-2$ with $[\mathrm{RhCl}(\operatorname{cod})]_{2}$ in methanol at room temp. and subsequent addition of AgClO_{4} gives the racemic complex 4 [mp $240^{\circ} \mathrm{C}$ (decomp.), dark-red needles, 65% yield]. The racemization may be ascribed to the conformational lability of the free and coordinated biisoquinoline. The latter is shown by the temperature dependence of the diastereoisotopic ethylene proton signals; two multiplets observed at $\delta 4.66$ and 4.86 at room temp. coalesced to broad peak at $\delta 4.7$ at $95^{\circ} \mathrm{C}$. In contrast, a similar reaction of $(+)-\mathbf{3}$ and $(-)-3$ with more rigid conformation proceeds with retention to afford optically active rhodium(I) complex 5 [mp $245^{\circ} \mathrm{C}$ (decomp.) $61-65 \%$ yield] as dark-red needles $\left[(S)-(+)-5,[\alpha]^{24} \mathrm{D}\right.$ $\left.\left(\mathrm{CHCl}_{3}\right)+24.6 ;(R)-(-)-5,[\alpha]^{24} \mathrm{D}\left(\mathrm{CHCl}_{3}\right)-25.0\right]$. The chelate coordination of the biisoquinolines in 4 and $(R)-(-)-5$ and absolute configuration of the latter are unambiguously determined by an X-ray structural study. (Figs. 1 and 2.) \ddagger

The geometry about the Rh atom of 4 and $(R)-(-)-5$ is essentially planar with the dihedral angle of the $\mathrm{Rh}-\mathrm{N}(2)-\mathrm{N}(12)$ and $\mathrm{Rh}-c-c^{\prime}$ plane of 7.0 and 2.9°, where c and c^{\prime} represent the midpoint of the coordinated olefinic bonds of cod, respectively. The ${ }^{1} \mathrm{H}$ NMR spectra of 4 and $(R-(-)-5$ indicate that both cations have a strict twofold symmetry axis in solution. The former also assumes approximately C_{2} symmetry in the crystal, while the latter loses axial symmetry owing to an asymmetric disposition of the 7,7'-bridged group. The $\mathrm{Rh}-\mathrm{N}$ distance [mean $2.097(9) \AA$] and $\mathrm{N}-\mathrm{Rh}-\mathrm{N}$ angle [78.0(4) ${ }^{\circ}$] of 4 are comparable with the respective values $\left[2.113(18) \AA, 78.3(7)^{\circ}\right]$ of $(R)-(-)-5$. Optimum chelation of bipyridines and biquinolines to metal is known to be attained when two aromatic rings are coplanar. This conformation is not possible for the present $1,1^{\prime}$ biisoquinolines with the $7,7^{\prime}$-bridging group. Indeed, the dihedral angle between two pyridine rings is 30.5 and 34.2° for 4 and $(R)-(-)-5$, respectively. The long span between the 7 and
电

Scheme 1

Fig. 1 View of the cation of 4. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ Rh-N(2) 2.103(9), Rh-N(12) 2.090(9), Rh-C(25) 2.16(1), Rh-C(26) 2.13(1), Rh-C(29) 2.15(1), Rh-C(30) 2.16(1), C(25)-C(26) 1.39(2), C(29)$\mathrm{C}(30) 1.38(2) ; \mathrm{N}(2)-\mathrm{Rh}-\mathrm{N}(12) 78.0(4), \mathrm{N}(2)-\mathrm{Rh}-\mathrm{C}(25) 163.7(5), \mathrm{N}(2)-$ $\mathrm{Rh}-\mathrm{C}(26) 157.6(4), \mathrm{N}(2)-\mathrm{Rh}-\mathrm{C}(29) 98.4(4)$, $\mathrm{N}(2)-\mathrm{Rh}-\mathrm{C}(30) 95.8(5)$, $\mathrm{N}(12)-\mathrm{Rh}-\mathrm{C}(25) \quad 96.7(4), \mathrm{N}(12)-\mathrm{Rh}-\mathrm{C}(26)$ 97.6(4), $\mathrm{N}(12)-\mathrm{Rh}-\mathrm{C}(29)$ 166.9(5), N(12)-Rh-C(30) 154.7(5), C(25)-Rh-C(26) 37.7(4), C(29)-RhC(30) 37.4(5).

Fig. 2 View of the cation of $(R)-(-)-5$. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right) \mathrm{Rh}-\mathrm{N}(2) 2.121(18), \mathrm{Rh}-\mathrm{N}(12) 2.104(18), \mathrm{Rh}-\mathrm{C}(33) 2.18(3), \mathrm{Rh}-$ $\mathrm{C}(34) 2.13(3), \mathrm{Rh}-\mathrm{C}(37) 2.17(3), \mathrm{Rh}-\mathrm{C}(38) 2.18$ (3), C(33)-C(34) 1.41(3), $\mathrm{C}(37)-\mathrm{C}(38) \mathrm{I} .38(4) ; \mathrm{N}(2)-\mathrm{Rh}-\mathrm{N}(12) 78.3(7), \mathrm{N}(2)-\mathrm{Rh}-\mathrm{C}(33) 162.2(8)$, $\mathrm{N}(2)-\mathrm{Rh}-\mathrm{C}(34) \quad 158.1(9), \quad \mathrm{N}(2)-\mathrm{Rh}-\mathrm{C}(37) \quad 97.2(9), \quad \mathrm{N}(2)-\mathrm{Rh}-\mathrm{C}(38)$ 95.2(8), $\mathrm{N}(12)-\mathrm{Rh}-\mathrm{C}(33)$ 97.1(8), $\mathrm{N}(12)-\mathrm{Rh}-\mathrm{C}(34) 94.4(9)$, $\mathrm{N}(12)-\mathrm{Rh}-$ $\mathrm{C}(37)$ 163.4(8), $\mathrm{N}(12)-\mathrm{Rh}-\mathrm{C}(38) 158.2(9), \mathrm{C}(33)-\mathrm{Rh}-\mathrm{C}(34) 38(1), \mathrm{C}(37)-$ Rh-C(38) 37.1(9).

7 '-positions of the biisoquinoline in $(R)-(-)-5$ is reflected in the large dihedral angle. Remarkably, the isoquinoline rings in the latter also deviate from planarity by bending outward at the fused $\mathrm{C}-\mathrm{C}$ bonds as shown by the large dihedral angle (48.7°) between two benzene rings compared with that of two pyridines. Such a deviation is not observed for 4 , the corresponding angle (30.3°) is comparable with that of two pyridines. Despite the extensive development of asymmetric hydrogenation and $\mathrm{C}-\mathrm{C}$ coupling reactions catalysed by chiral transition metal complexes, asymmetric oxidation reaction still remains to be explored. ${ }^{10}$ This is probably due to the rarity of suitable chiral ligands stable to oxidation. In view of the stability to oxidation and racemization in both free and coordinated states, 3 may serve as a potential chiral ligand in metal-catalysed asymmetric oxidation.

Received, 15th May 1995; Com. 5/03086B

Footnotes

\dagger Satisfactory analytical and spectroscopic data have been obtained for all new compounds. Selected data for 2: ${ }^{1} \mathrm{H}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{NO}_{2}$) $\delta 4.16$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.49\left(\mathrm{dd}, J 1.8,9.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{6}\right), 7.80(\mathrm{~d}$, $\left.J 1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{8}\right), 7.92\left(\mathrm{~d}, J 9.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{5}\right), 8.01\left(\mathrm{~d}, J 5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{4}\right), 8.94$ (d, J5.6 Hz, 2H, H3); For 3: ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{NO}_{2}$) $\delta 3.71(\mathrm{~s}, 3 \mathrm{H}$, OMe), 5.22 and $5.34\left(\mathrm{~d}, J 13.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 6.63\left(\mathrm{~d}, J 2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{4^{\prime}}\right.$, $\left.\mathrm{H}^{6^{\prime}}\right), 6.71\left(\mathrm{~d}, J 2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 6.80\left(\mathrm{~d}, J 2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{8}\right), 7.43(\mathrm{dd}, J 2.5$, $\left.9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{6}\right), 7.70\left(\mathrm{~d}, J 5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{4}\right), 7.85\left(\mathrm{~d}, J 9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{5}\right), 8.62$ $\left(\mathrm{d}, J 5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{3}\right)$. For 4: ${ }^{1} \mathrm{H}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{NO}_{2}$) $\delta 1.88-3.12(\mathrm{~m}$, $\left.8 \mathrm{H}, \mathrm{CH}_{2}\right), 4.40-4.64(\mathrm{~m}, 4 \mathrm{H},=\mathrm{CH}), 4.66$ and $4.86\left(\mathrm{brd}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 7.59(\mathrm{dd}$, $\left.J 1.8,9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{6}\right), 7.84\left(\mathrm{dd}, J_{\mathrm{Rh}-\mathrm{H}^{3}} 1.3, J 6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{3}\right), 8.03(\mathrm{~d}, J 2.0$, $\left.9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{5}\right), 8.09\left(\mathrm{~d}, J 6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{4}\right), 8.14\left(\mathrm{~d}, J 1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{8}\right)$. For $(R)-(-)-5:{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{NO}_{2}\right) \delta 1.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.33(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.77(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 4.58(\mathrm{~m}, 2 \mathrm{H},=\mathrm{CH}), 4.75(\mathrm{~m}, 2 \mathrm{H},=\mathrm{CH}), 5.22$ and $5.35\left(\mathrm{~d}, J 15.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 6.60\left(\mathrm{~d}, J 2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{4 \prime}, \mathrm{H}^{6 \prime}\right), 6.90(\mathrm{~d}$, $\left.J 2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2 \prime}\right), 6.96\left(\mathrm{~d}, J 1.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{8}\right), 7.62\left(\mathrm{~d}, J 6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{5}\right)$, $7.80\left(\mathrm{dd}, J 1.9,6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{6}\right), 7.97\left(\mathrm{~d}, J 4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{4}\right), 8.06\left(\mathrm{dd}, J_{\mathrm{Rh}-\mathrm{H}^{3}}\right.$ $1.0, J 4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{3}$); UV-VIS (MeOH) $\lambda_{\max } / \mathrm{nm} 255(\mathrm{sh})(43200), 402$ (10950), $535(515) ; \mathrm{CD}(\mathrm{MeOH})$ for $(+)-5[\theta](\mathrm{nm})+108740(277),+14370$ (350), +290 (414), -2520 (447), +1360 (496).
\ddagger The structures of 4 and $(R)-(-)-5$ were solved by Patterson methods and refined by full-matrix least-squares techniques of intensity data collected on a Rigaku AFC-5R diffractometer using grafite-monochromated Mo-K α radiation ($\lambda=0.7107 \AA$).

Crystal data for 4: $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{ClN}_{2} \mathrm{O}_{6} \mathrm{Rh} \cdot\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}, M=683.0$, monoclinic, $P 2_{1} / a, a=20.028(16), b=12.677(5), c=11.251(10) \AA, \beta=$ $94.09(8)^{\circ}, V=2849(6) \AA^{3}, Z=4, D_{\mathrm{c}}=1.592 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=7.33$ $\mathrm{cm}^{-1}, F(000)=1400$, final $R\left(R_{\mathrm{w}}\right)=0.060(0.050)$ for 2077 intensities [$I>2.5 \sigma(I)]$ and 379 variables.

Crystal data for (R)-(-)-5: $\mathrm{C}_{35} \mathrm{H}_{32} \mathrm{ClN}_{2} \mathrm{O}_{7} \mathrm{Rh} \cdot 2 \mathrm{CHCl}_{3}, M=969.8$, orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=16.834(8), b=25.971(9), c=8.994(8) \AA, V$ $=3932(8) \AA^{3}, Z=4, D_{\mathrm{c}}=1.638 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=9.56 \mathrm{~cm}^{-1}, F(000)$ $=1960$, final $R\left(R_{\mathrm{w}}\right)=0.0694(0.0548)$ for 1342 intensities $[I>2.0 \sigma(I)]$ and 252 variables. The possibility of the alternative (S)-enantiomer is ruled out on the basis of significance tests on the R-factor, ${ }^{9}$ the final $R\left(R_{\mathrm{w}}\right)$ factors being $0.0703(0.0556)$.

Atomic coordinates, bond lengths and angles, and thermal parameters for both compounds have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No. 1.

References

1 Asymmetric Synthesis, ed. J. D. Morrison, Academic, Orlando, 1985.
2 R. P. Thummel and F. Lefoulon, Inorg. Chem., 1987, 26, 675; R. P. Thummel, F. Lefoulon and J. D. Korp, Inorg. Chem., 1987, 26, 2370.
3 R. P. Thummel, F. Lefoulon and R. Mahadevan, J. Org. Chem., 1985, 50, 3824; J. Rebek, Jr., T. Costello and R. Wattley, J. Am. Chem. Soc., 1985, 107, 7487.
4 K. Yamamoto, K. Watanabe, H. Chikamatsu, Y. Okamoto and T. Yoshida, J. Chem. Soc. Chem. Commun., 1987, 807.
5 von P. Fritsch, Liebigs Ann. Chem., 1985, 286, 1.
6 R. C. Fuson and E. A. Cleveland, Org. Synth., 1955, Coll. Vol. III, 339.

7 E. Weber and F. Vögtle, Chem. Ber., 1976, 109, 1803.
8 Y. Okamoto, M. Kawashima and K. Hatada, J. Chromatogr., 1986, 363, 173.

9 W. C. Hamilton, Acta Crystallogr., 1965, 18, 502; D. Roger, Acta Crystallogr. Sect. A, 1981, 37, 734.
10 Catalytic Asymmetric Synthesis, ed. I. Ojima, VCH, New York, 1993; Asymmetric Catalysis in Organic Synthesis, ed. R. Noyori, Wiley, New York, 1993.

